Identifikasi Segmen Pasar Mahasiswa Perguruan Tinggi Menggunakan Analisis Klaster Berdasarkan Variabel Psikografis


  • Hardika Khusnuliawati Universitas Sahid Surakarta
  • Dhian Riskiana Putri Universitas Sahid Surakarta



segmentasi pasar, analisis kluster, variabel psikografis


The importance of the presence of higher education enables the private sector to participate in organizing academic activities in the form of higher education institutions. This causes the private higher education market to become more competitive, which implies a low number of students. Therefore, market segmentation needs to be applied to college students so that they can help to determine the model of marketing and promotional activities. The stages carried out in this study consisted of data collection, data exploration, and extracting segment. Cluster analysis was applied as a method for extracting segments of students with psychographics variables as partitioning factors. The K-Means algorithm was chosen as the method applied for cluster analysis because it produces better performance when compared to the use of K-Modes. Cluster analysis based on psychographics variables applied to this case succeeded in extracting the segment of the university students into 6 segments.


Abadi, S., Mat The, K. S., Nasir, B. M., Huda, M., Ivanova, N. L., Sari, T. I., Maseleno, A., Satria, F., & Muslihudin, M. (2018). Application model of k-means clustering: Insights into promotion strategy of vocational high school. International Journal of Engineering and Technology(UAE), 7(2.27 Special Issue 27), 182–187.

Angulo, F., Pergelova, A., & Rialp, J. (2010). A market segmentation approach for higher education based on rational and emotional factors. Journal of Marketing for Higher Education, 20(1), 1–17.

Armstrong, G., Adam, S., Denize, S., & Kotler, P. (2014). Principles of marketing. Pearson Australia.

Arsova, M., & Temjanovski, R. (2019). Strategy for market segmentation and differentiation: contemporary marketing practice. Journal of Economics, 4(1), 27–35.

Casidy, R., & Wymer, W. (2018). A taxonomy of prestige-seeking university students: strategic insights for higher education. Journal of Strategic Marketing, 26(2), 140–155.

Goodrich, K., Swani, K., & Munch, J. (2020). How to connect with your best student prospects: Saying the right things, to the right students, in the right media. Journal of Marketing Communications, 26(4), 434–453.

Govindasamy, R. (2018). Cluster Analysis of Wine Market Segmentation – A Consumer Based Study in the Mid-Atlantic USA. Economic Affairs, 63(1), 151–157.

Hung, C., & Tsai, C. F. (2008). Market segmentation based on hierarchical self-organizing map for markets of multimedia on demand. Expert Systems with Applications, 34(1), 780–787.

Hung, P. D., Ngoc, N. D., & Hanh, T. D. (2019). K-means Clustering Using R A Case Study of Market Segmentation. Proceedings of the 2019 5th International Conference on E-Business and Applications - ICEBA 2019, 100–104.

Kamthania, D., Pahwa, A., & Madhavan, S. S. (2018). Market segmentation analysis and visualization using K-mode clustering algorithm for E-commerce business. Journal of Computing and Information Technology, 26(1), 57–68.

Leonnard, L., Daryanto, H. K. ., Sukandar, D., & Yusuf, E. Z. (2014). The Loyalty Model of Private University Student. International Research Journal of Business Studies, 7(1), 55–68.

Lin, C. F. (2002). Segmenting customer brand preference: Demographic or psychographic. Journal of Product & Brand Management, 11(4), 249–268.

Liu, H., Huang, Y., Wang, Z., Liu, K., Hu, X., & Wang, W. (2019). Personality or value: A comparative study of psychographic segmentation based on an online review enhanced recommender system. Applied Sciences (Switzerland), 9(10).

Maciejewski, G., Mokrysz, S., & Wróblewski, ?. (2019). Segmentation of coffee consumers using sustainable values: Cluster analysis on the Polish coffee market. Sustainability (Switzerland), 11(3), 1–20.

Makgosa, R., Matenge, T., & Mburu, P. (2016). Hybrid Segmentation in the Financial Services Market: Targeting Saving Consumers. Family and Consumer Sciences Research Journal, 44(4), 447–468.

Müller, H., & Hamm, U. (2014). Stability of market segmentation with cluster analysis - A methodological approach. Food Quality and Preference, 34, 70–78.

Nadanyiova, M., & Gajanova, L. (2019). The impact of psychographic segmentation on marketing communication in transport company. Transport Means - Proceedings of the International Conference, 2019-Octob(April), 216–220.

Schlegelmilch, B. B. (2016). Segmenting Targeting and Positioning in Global Markets. 1985, 63–82.

Tempola, F., & Assagaf, A. F. (2018). Clustering of Potency of Shrimp In Indonesia With K-Means Algorithm And Validation of Davies-Bouldin Index. 1(Icst), 730–733.




How to Cite

Hardika Khusnuliawati, & Riskiana Putri, D. (2021). Identifikasi Segmen Pasar Mahasiswa Perguruan Tinggi Menggunakan Analisis Klaster Berdasarkan Variabel Psikografis. Risenologi, 6(1b), 44–49.