Uji Kinerja Komposit TiO2-Graphene/Surfaktan dalam Mendegradasi Senyawa Fenol


  • Desi Heltina Universitas Riau
  • Dwi Imamatul Mastura Universitas Riau
  • Arif Partama Universitas Riau




Fotodegradasi, graphene, titanium dioksida


Phenol is a hazardous compound that is often found in wastewater in most industries and cannot be degraded naturally. Photocatalysis is a promising method to reduce phenol waste, because it can produce more environmentally friendly compounds like CO2 and H2O. Titanium dioxide (TiO2) has been widely applied in the degradation process of waste compounds including phenol waste. To improve the performance of TiO2, graphene can be used as a dopants because it has a surface area. Modification of graphene with surfactants was carried out to increase dispersion and reduce agglomeration on TiO2 doped with graphene. The purpose of this research is to synthesize TiO2–graphene/surfactant composite which can be used to degrade phenolic compounds. Photodegradation of TiO2 composites was carried out by varying the initial concentration of phenol (10, 20, 30 ppm). Composites synthesis begins with disperse the surfactant on the surface of the graphene, then proceeds with doping graphene (surfactant) on TiO2. The resulting composites were characterized using SEM, BET, FTIR, XRD and UV-Vis spectrophotometer. The phenol degradation process was carried out using a photodegradation reactor. The highest performance TiO2–graphene/surfactant composite was obtained at an initial concentration of 10 ppm phenol is 81.02%


Aleksandrzak, M., Adamski, P., Kuku?ka, W., Zielinska, B., & Mijowska, E. (2015). Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Applied Surface Science, 331, 193–199.

Çiplak, Z., Yildiz, N., & C?limli, A. (2015). Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fullerenes Nanotubes and Carbon Nanostructures, 23(4), 361–370.

Dewidar, H., Nosier, S. A., & El-Shazly, A. H. (2018). Photocatalytic degradation of phenol solution using Zinc Oxide/UV. Journal of Chemical Health and Safety, 25(1), 2–11.

Feng, C., Chen, Z., Jing, J., & Hou, J. (2020). The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. Journal of Materials Chemistry C, 8(9), 3000–3009.

Fu, Z., Zhang, S., & Fu, Z. (2019). Preparation of multicycle GO/TiO2 composite photocatalyst and study on degradation of methylene blue synthetic wastewater. Applied Sciences (Switzerland), 9(16), 3282.

Gomez, C. V., Tene, T., Guevara, M., Usca, G. T., Colcha, D., Brito, H., Molina, R., Bellucci, S., & Tavolaro, A. (2019). Preparation of few-layer graphene dispersions from hydrothermally expanded graphite. Applied Sciences (Switzerland), 9(12), 2539.

Hodges, B. C., Cates, E. L., & Kim, J. H. (2018). Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nature Nanotechnology, 13(8), 642–650.

Hu, J., Li, H., Muhammad, S., Wu, Q., Zhao, Y., & Jiao, Q. (2017). Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry, 253, 113–120.

Huang, H., Fang, J., Xia, Y., Tao, X., Gan, Y., Du, J., Zhu, W., & Zhang, W. (2013). Construction of sheet-belt hybrid nanostructures from one-dimensional mesoporous TiO2(B) nanobelts and graphene sheets for advanced lithium-ion batteries. Journal of Materials Chemistry A, 1(7), 2495–2500.

Jafri, N. N. M., Jaafar, J., Alias, N. H., Samitsu, S., Aziz, F., Salleh, W. N. W., Yusop, M. Z. M., Othman, M. H. D., Rahman, M. A., Ismail, A. F., Matsuura, T., & Isloor, A. M. (2021). Synthesis and characterization of titanium dioxide hollow nanofiber for photocatalytic degradation of methylene blue dye. Membranes, 11(8), 581.

Kim, K. Do, Han, D. N., Lee, J. B., & Kim, H. T. (2006). Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method. Scripta Materialia, 54(2), 143–146.

Kumar, K. Y., Saini, H., Pandiarajan, D., Prashanth, M. K., Parashuram, L., & Raghu, M. S. (2020). Controllable synthesis of TiO2 chemically bonded graphene for photocatalytic hydrogen evolution and dye degradation. Catalysis Today, 340, 170–177.

Kusumawardani, L. J., & Syahputri, Y. (2019). Study of structural and optical properties of Fe(III)-doped TiO2 prepared by sol-gel method. IOP Conference Series: Earth and Environmental Science, 299(1).

Lee, H., Kannan, P., Al Shoaibi, A., & Srinivasakannan, C. (2019). Phenol degradation catalyzed by metal oxide supported porous carbon matrix under UV irradiation. Journal of Water Process Engineering, 31, 100869.

Li, H., Wang, P., Yi, X., & Yu, H. (2020). Edge-selectively amidated graphene for boosting H2-evolution activity of TiO2 photocatalyst. Applied Catalysis B: Environmental, 264, 118504.

Li, Yang, Feng, X., Lu, Z., Yin, H., Liu, F., & Xiang, Q. (2018). Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites. Journal of Colloid and Interface Science, 513, 866–876.

Li, Yuan, Wang, X., Gong, J., Xie, Y., Wu, X., & Zhang, G. (2018). Graphene-Based Nanocomposites for Efficient Photocatalytic Hydrogen Evolution: Insight into the Interface toward Separation of Photogenerated Charges. ACS Applied Materials and Interfaces, 10(50), 43760–43767.

Mohamed, A., Nasser, W. S., Kamel, B. M., & Hashem, T. (2019). Photodegradation of phenol using composite nanofibers under visible light irradiation. European Polymer Journal, 113, 192–196.

Moztahida, M., & Lee, D. S. (2020). Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surface methodology. Journal of Hazardous Materials, 400, 123314.

Sharma, A., Karn, R. K., & Pandiyan, S. K. (2014). Synthesis of TiO2 Nanoparticles by Sol-gel Method and Their Characterization. Journal of Basic and Applied Engineering Research, 1(9), 1–5.

Syahin, M., Zamri, F. A., & Sapawe, N. (2019). Regeneration Studies of TiO2 Photocatalyst for Degradation of Phenol in a Batch System. In Materials Today: Proceedings, 19, 1327-1332.

Torkaman, M., Rasuli, R., & Taran, L. (2020). Photovoltaic and photocatalytic performance of anchored oxygen-deficient TiO2 nanoparticles on graphene oxide. Results in Physics, 18, 103229.

Zhang, H., Wang, X., Li, N., Xia, J., Meng, Q., Ding, J., & Lu, J. (2018). Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Advances, 8(60), 34241–34251.




How to Cite

Desi Heltina, Imamatul Mastura, D. ., & Partama, A. (2021). Uji Kinerja Komposit TiO2-Graphene/Surfaktan dalam Mendegradasi Senyawa Fenol. Risenologi, 6(1b), 50–55. https://doi.org/10.47028/j.risenologi.2021.61b.244